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Abstract. The 1s3d 3D level of atomic helium cannot be excited directly by proton impact, but it is
strongly populated by cascade feeding from 1snl states with l ≥ 3, if 10 ÷ 15 keV protons are used for
excitation. This cascade feeding process can be analysed in detail by investigating the intensity of the
spectral line at λ(1s3d 3D–1s2p 3P) = 588 nm as a function of an electric field directed parallel and
antiparallel to the proton beam. In this paper the intensity functions are calculated assuming collisional
excitation of parabolic singlet states |1s; n, n1, n2, m〉 with large electric dipole moments. The theoretical
results are compared with the experimental intensity function published earlier. Excellent agreement is
obtained if the excitation cross-sections σn of the parabolic states scale as n−3.

PACS. 34.50.-s. Scattering of atoms and molecules – 32.60.+i Zeeman and Stark effects

1 Introduction

Studying ion-atom collisions provides an opportunity to
analyze the dynamics of atomic processes. Here we are
concerned with proton-impact excitation of helium atoms.
In the spectrum of He atoms excited by collisions with
protons strong triplet lines are observed, though accord-
ing to Wigner’s spin conservation rule one expects that
only singlet states are excited. It has been shown [1] that
an excitation of triplet states is possible due to the strong
singlet-triplet mixing occurring in He I 1snl states with
l ≥ 3 [2]. For analyzing the appearance of triplet lines, it
is convenient to describe the excitation process using exci-
tation matrices. It is a Hermitian matrix. The (real) diago-
nal matrix elements are the excitation cross-sections of the
basis states used for the matrix representation of the ex-
citation operator, and the complex off-diagonal elements
are coherence parameters describing the coherent excita-
tion of different basis states. Their real components are re-
lated to the charge distribution [3,4] and their imaginary
components to the current distribution [5] of the post-
collisional atomic state. The coherence parameters can be
determined experimentally by measuring the fluorescence-
light intensity of spectral lines if specially designed electric
and magnetic fields are applied to the collision volume.

In this paper I investigate the appearance of the He I
triplet line λ(1s3d 3D–1s2p 3P) = 588 nm after colli-
sional excitation of He atoms by proton impact. The oc-
currence of this spectral line is surprising, because the
singlet-triplet mixing of the 1s3d levels is extremely small.
However, cascade feeding of the 1s3d 3D level is possible,
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if l ≥ 3 states are populated by the excitation process.
Aynacioglu et al. [6] have shown that, indeed, cascade
feeding from l ≥ 3 states is the dominant excitation
mechanism for excitation of the 1sd 3D level by proton
impact. Therefore, the appearance of the 588 nm line pro-
vides a unique opportunity for studying the excitation of
the high-l states of He I by proton impact. As has been
shown by Aynacioglu et al., an excitation of high-l states
is most likely at intermediate energies, where the veloc-
ity vp of the proton is on the order of the Bohr velocity
vB = 1 a.u.

The significance of cascade feeding for the excitation
of the 1snd 3D levels by proton impact becomes obvious
also from measurements of Büttrich et al. [7], in which the
excitation of the 1snd 1D levels has been investigated us-
ing anticrossing techniques. They measured the intensities
Iλ(Fz) of the λ(1snd − 1s2p 3P) spectral lines as a func-
tion of an electric field Fz applied to the collision volume
parallel and antiparallel to the proton beam. Though ex-
perimental recordings Iλ(Fz) were published in [7] only for
the 1snd configurations with n = 4÷7, they also recorded
an intensity function of the 1s3d 3D–1s2p 3P transition.
However, the electric fields, which could be applied, were
too weak for reaching the singlet-triplet anticrossings of
the 1s3d configuration. Therefore, this measurement was
left out of consideration in [7]. But a recording of the in-
tensity function of the 588 nm line has been published by
Skogvall and von Oppen [8]. These authors emphasize the
relation of the intensity variations near zero-field to cas-
cade feeding of the 1s3d 3D level, but do not present a
detailed evaluation of this recording either.
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Fig. 1. The intensity function I588(Fz) of the λ(1s3d 3D–
1s2p 3P) = 588 nm line for 12.5 keV proton-impact excitation
of helium atoms. The solid curve is the recorded [8] experimen-
tal shape, the broken curve represents the theoretical result.

Nevertheless, this recording, which is reproduced in
Figure 1, is worthwhile to be thoroughly evaluated. It
gives detailed information about the excitation of l ≥ 3
states of He I by 12.5 keV-proton impact and the relative
contributions of the various 1snl configurations to cascade
feeding. This information is of great interest with respect
to a better understanding of the excitation mechanisms
dominating in ion-atom collisions at intermediate energies.
In particular, regarding proton-helium collisions, a Paul-
trap model has been proposed for explaining the resonance
structure in the excitation functions of the 1snd 1D levels
at impact energies Ep between 10 and 15 keV [12]. This
excitation mechanism implies that also high-l states are
strongly populated in this energy region.

In this paper I investigate the cascade feeding of
the 1snd 3D level after selective excitation of singlet
states theoretically. The measured intensity function of
the 588 nm line, in particular, its asymmetry can be ex-
plained by assuming that the 1snl states with n ≤ 7 are
populated in agreement with the Paul-trap model and that
the excitation cross-sections scale as n−3.

2 Collisional excitation and radiative decay
in electric fields

In the semiclassical approach to ion-atom collisions the
projectile and target nucleus are assumed to move on clas-
sical trajectories. Therefore, their relative motion can be
parameterized by the impact parameter b and the angle ϕ
of the scattering plane. Accordingly, scattering, excitation
and charge transfer can be described as processes depend-
ing on b and ϕ. The evolution of the electron cloud during
the collision is evaluated quantum dynamically. As a re-
sult of this evolution, the post-collisional states Ψn(b, ϕ)

of e.g. a target atom with an electron excited to an orbit
with principal quantum number n is a pure state:

|ψn(b, ϕ)〉 =
∑

LSJM

|n(LS)JM〉〈n(L, S)JM |ψn(b, ϕ)〉

=
∑

LSJM

anLSJM(b, ϕ)|n(LS)JM〉· (1)

In integral experiments, where atoms are observed re-
gardless of the parameters (b, ϕ) of the relative motion
of the collision system, the ensemble of excited atoms is
in a mixed state described by a density matrix σ, usu-
ally called excitation matrix. The matrix elements σkk′

are obtained from the density matrices describing the pure
states ψn(b, ϕ) by integrating over the parameters b and ϕ:

σkk′ =
∫ 2π

0

∫ ∞

0

ak(b, ϕ)a∗k′ (b, ϕ)b db dϕ (2)

where k, k′ denote the quantum numbers n, l, m of the
orbital basis states |n, l,m〉 used for the representation of
the excitation matrix.

Due to the integration over ϕ, the excitation matrix
is rotationally symmetric. Therefore, states with different
Zeeman quantum numbers m are populated incoherently,
that is the off-diagonal matrix elements of σ with m �= m′
vanish. Regarding the integration over the impact param-
eter b, the question arises, to which extent this integration
implies that also states with different angular momentum
quantum numbers l are populated incoherently.

Actually, considering proton-helium collisions at inter-
mediate energies, not only states with low l quantum num-
bers as for high-energy collisions, but also the high-angular
momentum states are strongly populated. Surprisingly, it
could be shown experimentally that all states of an n shell
differing only in l are populated highly coherently. The ex-
perimental investigations performed by Büttrich and von
Oppen [9] even more revealed that the post-collisional
n-shell states are the parabolic states |n;n1, n2,m〉 with
n2 = 0 and |m| = 0 and 1. This highly selective excita-
tion of states with large electric dipole moments occurs
especially in the energy range 10 keV < Ep < 15 keV,
where the excitation cross-sections exhibit a resonance-
like maximum. To explain this maximum, the Paul-trap
model was proposed [10–12]. According to this model, the
rotation of the molecular axis of the collision system is
essential for excitation at intermediate energies. During
the collision, one electron of the He atom is energetically
promoted on the saddle of the two-center field of the ionic
projectile and the singly charged core of the target atom.
This promotion on the saddle is most effective at interme-
diate energies due to the rotation of the collision system,
which stabilizes the electron’s motion on the saddle as in
a Paul-trap [13].

The evolution of the electron cloud on the saddle of the
two-center field during the final phase of the collision can
be treated within the framework of saddle dynamics in-
troduced by Rost and Briggs [14]. They consider the sym-
metrical two-center potential of the H+

2 system. According
to saddle dynamics, the saddle state evolves diabatically
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along the in-saddle sequences to parabolic separated-atom
states with n1 or n2 = 0. Starting from the molecular
ground state 1sσg the electron is promoted along the in-
saddle sequence 1sσ–3dσ–5gσ... This sequence leads to the
parabolic target states |n;n− 1, 0, 0〉. On the other hand,
if the collision starts in the 2pσ state, the collision sys-
tem can evolve after a rotational 2pσ–2pπ coupling along
the sequence 2pπ–4fπ–6hπ... This sequence leads to the
parabolic target states |n;n− 2, 0,±1〉. Besides direct ex-
citation of target atoms, also electron transfer leading to
excited projectile atoms is possible. Saddle dynamics leads
also to parabolic post-collisional projectile states, but that
are states with n1 = 0. Here we assume a z-axis parallel
to the ion beam. According to these excitation processes
one expects that the electric dipole moments 〈−ez〉 of the
post-collisional target states are not only non-zero, but
also extremely large. For parabolic states these expecta-
tion values are given by [15]:

〈−ez〉 = −3
2
n(n1 − n2) a.u. (3)

Large electric dipole moments were detected first by
Havener et al. [16] for hydrogen atoms excited by electron
transfer in H+–He collisions with respect to single-electron
excitation, this collision system is similar to H+

2 . One elec-
tron can be assumed to stay as a spectator in the 1s or-
bital during the collision. Therefore, saddle dynamics is
likely to provide a simple intuitive model for explaining
the large values of the experimentally measured electric
dipole moments.

As expected according to saddle dynamics, not
only the post-collisional projectile states investigated by
Havener et al., but also the post-collisional target states
have large electric dipole moments, though with opposite
sign. This was shown by the measurements of Büttrich
et al. [7]. They used an experimental setup described
in [17]. A well collimated proton beam is crossed with
a thermal beam of helium atoms effusing from a multi-
channel plate. An electric field Fz could be applied to the
collision region parallel (Fz > 0) and antiparallel (Fz < 0)
to the ion beam. The fluorescence light emitted after col-
lisional excitation in a direction perpendicular to ion and
atom beam was detected using a photomultiplier. The in-
tensity of spectral lines selected with interference filters
were measured as a function of the electric field applied
to the collision region. Using this experimental technique,
also the intensity function I588(Fz) of the λ(1s3d 3D–
1s2p 3P) = 588 nm line of He I shown in Figure 1 was
recorded.

This intensity function, in particular, the remarkable
decrease of the intensity at electric fields of a few kV/cm
indicates that the 1s3d 3D level is dominantly populated
by cascade feeding from high-l states. At zero-field this
excitation process is highly effective, because the 1s3d 3D
level is the energetically lowest l = 2-level, to which the
atoms excited to states with l ≥ 3 can cascade down. How-
ever, at electric fields of a few kV/cm the nl states with
l ≥ 3 are strongly mixed with the nd states and, therefore,
they decay preferentially directly to the 1s2p configura-
tion. In addition, also due to the Stark mixing with the

Fig. 2. The energy levels scheme for He atom with indicated
possible cascade transitions feeding the 1s3d 3D level.

nd states, the singlet-triplet mixing of the high-l states
is strongly reduced by applying electric fields. Therefore,
transitions between singlet and triplet states are sup-
pressed and, hence, the population of triplet states by cas-
cade feeding, since the post-collisional He I states excited
by proton impact are singlet states.

Further remarkable features of this intensity function
are its asymmetry and the small intensity maxima at non-
zero electric fields. The asymmetry reflects the asymme-
try of the charge distributions of the post-collisional He I
states. The side maxima are due to singlet-triplet anti-
crossings of the 1s5l configurations. The occurrence of
these anticrossing resonances immediately indicates that
not only the 1s4f configuration, but also the 1s5l states
contribute to cascade feeding of the 1s3d 3D level.

The level scheme of He I shown in Figure 2 illustrates
cascade feeding of the 1s3 3D level from all 1snl config-
urations with n ≤ 7. These cascade channels were taken
into account below to explain the measured intensity func-
tion theoretically. Cascade feeding from high-n states has
a significant effect on the shape of the intensity function at
weak electric fields, because the polarizability of excited
He atom scales as n5.

3 Quantitative evaluation of I588(Fz)

The population of the 1s3d 3D states by cascade feeding in
an axial electric field can be evaluated quantitatively using
rate equations [8,18,19] describing excitation and decay of
all Stark sublevels k involved in the cascade processes:

Ipσk +
∑

i

WikPi − ΓkPk = 0. (4)

The collisional excitation rate Ipσk depends on the inten-
sity Ip of the proton beam (number of protons per m2 s)
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and the excitation cross-section

σk = 〈k|σ|k〉

of the eigenstate |k〉 of the Stark sublevel. The rate for
cascade feeding from an energetically higher Stark state |i〉
with population number Pi is given by the product WikPi,
where [15]

Wik =
4
3
e2�3

ik

�c3
|rik|2 (5)

is the rate of spontaneous transitions from |i〉 to |k〉 due
to the electric dipole coupling of the atom to the radiation
field (e2/hc = α fine structure constant,�ik transition fre-
quency). Under stationary conditions collisional excitation
and cascade feeding of the Stark substate |k〉 is balanced
by its radiative decay given by the decay rate Γk =

∑
iWki

and the population number Pk of |k〉.
The population numbers Pk can be calculated using

rate equation (4) provided coherence between the popu-
lation amplitudes of different Stark substates can be ne-
glected. This assumption is justified, since (i) the thermal
motion of the excited He atoms is negligible and (ii) an ax-
ial electric field is applied. Due to condition (i), excitation
and decay takes place under stationary conditions and,
therefore, coherence between the population amplitudes of
non-degenerate Stark states can be disregarded. Degener-
ate Stark states, however, have different Zeeman quantum
numbers m. Therefore, one finds in this case 〈k|σ|k′〉 = 0,
if the electric field is parallel to the proton beam.

The population numbers Pk can be deduced from the
rate equations, if the excitation cross-sections σk, the tran-
sition rates Wik and the decay rates Γk are known. These
parameters are functions of the electric field strength.
However, it can reasonably be assumed that the electric-
field dependence is exclusively a result of the fact that
the eigenstates |k〉 of the Stark sublevels change with the
strength of the electric field Fz.

Regarding the excitation cross-sections σk, I assume
that the collisional excitation process taking place in a
time

τcoll � τevol =
�

E − E′ , (6)

that is short compared with the evolution periods of
n-shell states, is not affected by the strength of the ex-
ternal field and the internal magnetic fine-structure cou-
pling. In that case, an electric-field independent excita-
tion matrix σ(n) can be introduced, which describes the
ensemble of atoms excited to n-shell states immediately
after collisional excitation. Using a representation with
Russell-Saunders basis states |n(LS)J,m〉 it has the fol-
lowing properties:

(i) because of Wigner’s spin conservation rule, only sin-
glet states can be excited by proton impact, that is
only matrix elements with S = S′ = 0 are non-zero;

(ii) due to the rotational symmetry with respect to the
proton beam, only matrix elements with m = m′ are
non-zero;

(iii) because of the reflection symmetry with respect to
any plane containing the beam, the matrix elements
are independent of the sign of m.

In spite of these restrictions, the excitation matrix σ(n)

is still a function of a set of
∑n

v=1 v
2 = n(n+1)(2n+1)/6

independent (real) parameters determined by the dynam-
ics of the excitation process. Assuming that the excita-
tion of He atoms by 12.5 keV-proton impact is dominated
by saddle dynamics, the number of dynamical parame-
ters is reduced to 2, namely the excitation cross-sections
of the parabolic singlet states 1Σ and 1Π , where the ex-
cited electron is in a state |n;n1, n2,m〉 with n2 = 0 and
|m| = 0 or 1. Indeed, assuming this highly selective excita-
tion mechanism, the cascade feeding of the 1s3d 3D level
can be explained in good agreement with the measured
intensity function I588(Fz) shown in Figure 1.

For determining the contributions of the different n
shells to the cascade feeding of the 1s3d 3D level, the
electric field dependent eigenstates |k〉 of the He atom
and the transition rates Wik defined in (5) have to be cal-
culated. That was done by diagonalizing the Hamiltonian

H = H0 +Hel, (7)

composed of the zero-field Hamiltonian H0 of the He
atom and the interaction of the atom with the external
electric field

Hel = ezFz. (8)

For each n shell the submatrices H(n) were diago-
nalized separately. The matrix elements of H

(n)
0 in

Russell-Saunders representation were deduced from the
experimental level energies [20] using the approach of
Cok and Lundeen [2] to reproduce the fine structure
of the 1snl configurations. The parameters hoff of the
off-diagonal matrix elements of the spin-orbit coupling are
essential for the formation of singlet-triplet anticrossings,
however, they cannot be deduced from the measured
fine-structure separations independently of the other
fine-structure parameters. Therefore, the parameters hoff

were calculated using their relation to the parameters
of the diagonal matrix elements of the spin-orbit coupling:

hoff = 3hso (9)

valid in the Heisenberg approximation. All parameters
ofH(n)

0 used for diagonalizingH(n) were tabulated for n =
2 ÷ 8 by Kaiser [21] and partly (for n = 3 ÷ 5) by Kaiser
et al. [22].

For evaluating the Hamiltonian Hel it is most appro-
priate to refer to the |n; l,ML, S,MS〉 basis, where L and
S are decoupled. In that case Hel is diagonal in ML, S
and MS , and the matrix elements of Hel are given by:

〈n,L,ML, S,MS |Hel|n′, L′,ML, S,MS〉 =

(−1)L−ML

(
L′ 1 L

−ML 0 ML

)
〈nL ‖ r ‖ n′L′〉eFz . (10)
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The reduced matrix elements 〈nL ‖ r ‖ n′L′〉 of the elec-
tric dipole operator r for S–P and P–D transitions are
obtained from the oscillator strengths fn′L+1S

nLS , calculated
by Kono and Hattori [23]:

|〈nL + 1S ‖ r ‖ n′LS〉|2 =
3(2L+ 1)

2|En′L+1S − EnLS | |f
n′L+1S
nLS |,

(11)
where EnLS denote the experimental ionization energy
taken from Martin [24]. The signs of the reduced matrix
elements are adopted from the hydrogen atom (see below).

The reduced matrix elements 〈nL + 1 ‖ r ‖ n′L〉 of r
with L ≥ 2 were calculated using the Heisenberg approx-
imation given by Bethe and Salpeter [15], where L = l is
the angular momentum quantum number of the excited
electron:

〈n′l + 1 ‖ r ‖ nl〉 =
√
l + 1Rn′l+1

nl . (12)

In that case, the radial integrals Rn′l′
nl for n = n′ needed

for evaluating the matrix elements of Hel are given by:

Rnl−1
nl = Rnl

nl−1 =
3
2
n
√
n2 − l2. (13)

The radial integrals Rn′l′
nl for n �= n′ needed for evalu-

ating the radiative transition rates Wik according to for-
mula (5) are also given by Bethe and Salpeter. Using these
matrix elements of the electric dipole operator r, the tran-
sition matrix elements rik between the electric-field eigen-
states and the transition rates Wik as well as the decay
rates Γk can be evaluated. With these calculated parame-
ters and the known eigenstates |k〉 of the Hamiltonian (7)
the population probabilities Pk were calculated from (4)
as functions of the electric field Fz using an appropriate
assumption for the excitation matrices σ(n). With respect
to proton-impact excitation of He atoms within the en-
ergy range of the resonance structure between 10 and
15 keV it is reasonable to assume selective excitation of
the parabolic states |n;n1, n2,m〉 with n2 = 0 and |m| = 0
or 1 in accordance with saddle dynamics. In that case, the
relative excitation cross-sections of these states are the
only variables available for fitting the measured intensity
functions Iλ(Fz) theoretically.

Büttrich et al. [7] have shown that within the n = 5
shell the two parabolic states |5; 4, 0, 0〉 and |5; 3, 0,±1〉
are populated approximately in the ratio 1.5 : 1 and that
similar results are found for the shells with n = 4 to 8.
Using these experimental ratios, the cascade contributions
due to direct excitation of states with n = 4 to 7 to the
population of the 1s3d 3D level were calculated as func-
tions of the electric field Fz . Cascade contributions from
states with n ≥ 8 were disregarded.

Finally, using the calculated population probabili-
ties P (3)

k of the 1s3d 3D Stark substates, the intensity
function I588(Fz) of the detected 3 3D–2 3P transitions
can be determined. The intensity function I588(Fz) was
measured by detecting light emitted within a solid an-
gle dΩ perpendicular (y-direction) to the direction of the

electric field Fz . Accordingly, the polarization ej of the
photons is ex or ez. Therefore, the fraction dWik of the
spontaneous emission rate Wik, where a photon is emitted
in the solid angle dΩ is given by [15]:

dWik =
[
e2/(hc3)

]
ω3 dΩ

∑
j=x,z

(ejrik)2 (14)

with ∑
j=x,z

(ejrik)2 = |〈i|x|k〉|2 + |〈i|z|k〉|2. (15)

With these emission rates the intensity function I588(Fz)
is given by

I588(Fz) = g588NT

∑
ki

dWkiPk, (16)

where the summation
∑

ki runs over all components of
the 1s3d 3D–1s2p 3P transition and g588 and NT are pro-
portionality constants representing the efficiency for de-
tecting 588 nm photons and the number of target atoms
in the collision volume, respectively.

4 Results and discussion

Assuming selective excitation of He I-singlet states, the
1s3d 3D level can only be populated by cascade feeding.
Most likely is cascade feeding from 1s4f states. Figure 3
shows intensity functions I588(Fz) calculated for direct ex-
citation of the parabolic n = 4 states |4;n1, n2,m〉 with
m = 0 or 1 and n2 = 0 (Figs. 3a and 3d) or n2 = 1
(Figs. 3b and 3e). Asymmetric intensity functions with a
maximum at an electric field Fz > 0 are obtained for states
with n1 > n2, that is states with an asymmetric charge
distribution. However, for excitation of the state |4; 1, 1, 1〉,
where n1 = n2, the intensity function is symmetric. Also
shown are the interference terms resulting from coherent
excitation of the two parabolic states with m = 0 (Fig. 3c)
and m = 1 (Fig. 3f). In these cases, the intensity function
was calculated using an excitation matrix, where only the
off- diagonal matrix elements 〈k|σ|k′〉 between the coher-
ently excited states are non-zero. Therefore, since the exci-
tation matrix is not positive definite, the intensity can be
negative. Only a superposition of the calculated intensity
functions corresponding to a positive definite excitation
matrix is physically relevant.

The presented curves were calculated using the nor-
malization Tr(σ) = 100, if the excitation matrix is posi-
tive definite. For the interference terms (k �= k′), where
Tr(σ) = 0, both off-diagonal elements were put 〈k|σ|k′〉 =
〈k′|σ|k〉 = 100. The intensity functions calculated for Π
states include a weight factor 2 taking into account
the ±m degeneracy of Stark sublevels.

The intensity functions calculated with the
parabolic n1 = 0 states qualitatively reproduce some
features of the measured intensity function shown in
Figure 1, in particular, the asymmetry of the zero-field
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Fig. 3. The intensity function I588(Fz) of the λ(1s3d 3D–
1s2p 3P) = 588 nm line calculated under the assumption that
only one particular parabolic state p = |n; n1, n2, |m|〉 (n =
4, |m| = 0, 1) is populated and the emitted photon is polar-
ized perpendicularly to the direction of observation. In the left
column are shown the intensities for the states with maximal
electric dipole moments (n2 = 0), while in the middle column
the intensities for the lower electric dipole moments (n2 = 1)
are represented. In the right column, are shown the intensities
for the interference term resulting from coherent excitation of
the states referred to in the first and second column. The di-
agonal elements of the excitation matrix σ are normalized to
100.

peak. A detailed comparison reveals, however, that
besides direct excitation of n = 4 states also cascading
from states with n ≥ 5 contributes to the population
of the 1s3d 3D level. On one hand, there are the small
intensity maxima at electric fields of a few kV/cm, which
can be related to singlet-triplet anticrossings of the 1s5l
configurations. On the other hand, the narrow tip of the
zero-field peak can only be reproduced by taking into
account cascading from highly excited levels.

Figure 4 shows intensity functions calculated by as-
suming direct excitation of parabolic n2 = 0 states
with n = 5, 6 and 7. Since the polarizability of the
excited He atoms increases, the widths of the zero-field
peaks strongly decrease with increasing n. Also the inten-
sity maxima due to singlet-triplet anticrossings become
extremely narrow and occur at weaker electric fields.

Finally to reproduce qualitatively the experimental in-
tensity function (Fig. 1, solid line), the following formula
was used:

Idet
588(Fz) = CI588(Fz) + ID, (17)

where I588(Fz) is the calculated intensity function (16),
C: normalization constant and ID is the intensity of the
dark current signal.

The only parameters left for reproducing the shape
of the measured intensity function within the framework
of the Paul-trap model are the relative population of the
parabolic Σ and Π states with n2 = 0 and the scaling of
the excitation cross-sections with the principal quantum

Fig. 4. The intensity function I588(Fz) of the λ(1s3d 3D–
1s2p 3P) = 588 nm line calculated under the assumption that
only one particular parabolic state p = |n; n1, n2, |m|〉 (n =
5, 6, 7 and |m| = 0, 1 is populated and the emitted photon
is polarized perpendicularly to the direction of observation.
There are shown the intensities only for the states with max-
imal electric dipole moments (n1 = n − 1, 2; n2 = 0). The
diagonal elements of the excitation matrix σ are normalized to
100.

number n. Regarding the zero-field resonances, the sig-
nal shapes obtained for the Σ and Π states with n2 = 0
(Figs. 3 and 4) are similar. However, Σ and Π give rise
to different anticrossing resonances. Therefore, the popu-
lation ratio

r(n) = Tr(σn,Σ)/2Tr(σn,Π) (18)

can best be determined from the measured amplitudes
of anticrossing resonances. For 12.5 keV-proton impact
excitation of n = 5 states, Büttrich et al. [7] deduced
r(5) = 1.5 ± 0.1. This result is also in agreement with the
anticrossing amplitudes of the measured intensity func-
tion I588(Fz) shown in Figure 1, though a detailed com-
parison is complicated due to the broadening of the anti-
crossing resonances induced by the inhomogeneity of the
electric field.

In accord with the experimental results [7,25,26] that
similar anticrossing spectra were measured for n = 4, 5, 6
and 7, I assumed this Σ/Π population ratio r(n) = 1.5 for
all n shells. Finally an appropriate choice had to be made
for the scaling of the excitation cross-sections with n.
A satisfying agreement of the calculated intensity func-
tion I588(Fz) with the measured one was obtained using
an n−3 scaling of the excitation cross-sections. This scal-
ing law is well-known to be valid in the high-energy range,
where the excitation cross-sections can be calculated using
Born’s approximation. The present analysis of the electric-
field dependence of the intensity of the 588 nm line shows
that the same scaling law can also be assumed at interme-
diate energies, where the excitation cross-sections of the
1snd 1D levels reach their absolute maximum.
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Though the calculated intensity function, shown in
Figure 1 (broken line) is in reasonable agreement with
the experimental one (solid line), some deviations are ob-
vious. These deviations can mainly be attributed to the
inhomogeneity of the electric field applied to the collision
volume, which was not taken into account in the calcu-
lations. Due to this inhomogeneity, in particular, the an-
ticrossing resonances of the measured intensity function
are significantly broadened. As a result, the experimental
amplitudes of the n = 5 anticrossings of both Σ and Π
sublevels (marked by σ and π, respectively, in Fig. 1) are
much smaller than the calculated ones, and resonances of
anticrossings of sublevels with n = 6 and 7 were not de-
tected. Since the electric-field broadening is proportional
to the field strength, the zero-field resonance is less af-
fected by the inhomogeneity. Also here the deviations are
most significant, where the field strength is largest.

5 Conclusions

The intensity function I588(Fz) measured for 12.5 keV-
proton impact on helium atoms by Büttrich et al. [7]
was analyzed theoretically. Since the singlet states of He
I are populated selectively by proton impact, the triplet
line at λ(1s3d 3D–1s2p 3P) = 588 nm appears only due
to singlet-triplet mixing of high-l states. The theoreti-
cal analysis of the measured intensity function confirmed
that at the intermediate proton energy of 12.5 keV, where
the excitation functions of the 1snd 1D states exhibit a
resonance-like maximum, the high-l states are populated
in accordance with Paul-trap model and saddle dynam-
ics: namely that within an n-shell the parabolic Σ and
Π Stark sublevels with the largest electric dipole mo-
ments (n2 = 0) are excited selectively. Furthermore, the
measured intensity function is in agreement with the as-
sumption that the excitation cross-sections σ(n) of differ-
ent n-shells scale as n−3 in the intermediate energy range.

It would be worthwhile to investigate the intensity
function I588(Fz) thoroughly in an extended energy range.
Measurements on the anticrossing spectra of the 1s4d and
1s5d configurations [7,25] have shown that the excitation
matrices change dramatically with increasing proton en-
ergy. In particular, referring to parabolic basis states, not
only He I states with n2 = 0, but also with n2 = 1 are
increasingly populated. Since the parabolic n2 = 0 and
n2 = 1 states are populated partly coherently, this change
of the excitation matrix significantly affects, in particular,
the population of high-l states. Measurements of the inten-
sity of the 588 nm line as a function of an electric field Fz

would provide excellent means to analyze the variation of
the high-l components of the excitation matrices with the
proton energy.
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